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1 Principles of Allostasis: Optimal Design, Predictive
Regulation, Pathophysiology, and Rational
Therapeutics1,2

Peter Sterling

INTRODUCTION

This chapter compares two alternative models of physiological regulation.
The first model, homeostasis (“stability through constancy”), has domi-
nated physiology and medicine since Claude Bernard declared, “All the vital
mechanisms . . . have only one object – to preserve constant the conditions
of . . . the internal environment.” His dictum has been interpreted literally
to mean that the purpose of physiological regulation is to clamp each in-
ternal parameter at a “setpoint” by sensing errors and correcting them with
negative feedback (Fig. 1.1; Cannon, 1935). Based on this model, physi-
cians reason that when a parameter deviates from its setpoint value, some
internal mechanism must be broken. Consequently, they design therapies
to restore the “inappropriate” value to “normal.”

The homeostasis model has contributed immeasurably to the theory and
practice of scientific medicine, so to criticize it might almost seem absurd.
Yet all scientific models eventually encounter new facts that do not fit, and
this is now the case for homeostasis. In physiology, evidence accumulates
that parameters are not constant. Their variations, rather than signifying er-
ror, are apparently designed to reduce error. In medicine, major diseases now
rise in prevalence, such as essential hypertension and type 2 diabetes, whose

I thank Joseph Eyer for many wonderful years of collaboration, Charles Kahn for suggesting the
Greek roots of allostasis, Jonathan Demb for help with Figures 1.1, 1.5, and 1.13, and Jay Schulkin
for his encouragement and patience. I also thank Jay Schulkin, Gerd Blobel, Mark Friedman, Paul
Glimcher, Bettina Hoerlin, Neil Krieger, Simon Laughlin, Nicole Neff, Paul Rozin, Gino Segre,
Ingrid Waldron, Martin Wilson, and Sally Zigmond for stimulating discussions and for valuable
comments on the manuscript. I am greatly indebted to Sharron Fina for preparing both the
manuscript and most of the figures.
1 This essay is dedicated to the memory of Howard A. Schneiderman, who recruited me to

experimental biology and bailed me out of a Mississippi jail.
2 Collected essays on this and related topics are available at http://retina.anatomy.upenn.edu/

allostasis/allostasis.html
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Figure 1.1: Alternative models of regulation. Homeostasis describes mechanisms that
hold constant a controlled variable by sensing its deviation from a “setpoint” and feeding
back to correct the error. Allostasis describes mechanisms that change the controlled
variable by predicting what level will be needed and then overriding local feedback to
meet anticipated demand.

causes the homeostasis model cannot explain. For in contrast to the hyper-
tension caused by a constricted renal artery and the diabetes caused by im-
mune destruction of insulin-secreting cells, these newer disorders present no
obviously defective mechanism. Treating them with drugs to fix low-level
mechanisms that are not broken turns out not to work particularly well.
The chapter expands on each of these points.

The second model, allostasis (“stability through change”), takes virtually
the opposite view. It suggests that the goal of regulation is not constancy,
but rather fitness under natural selection. Fitness constrains regulation to be
efficient, which implies preventing errors and minimizing costs. Both needs
are best accomplished by using prior information to predict demand and
then adjusting all parameters to meet it (Fig. 1.1). Thus allostasis considers
an unusual parameter value not as a failure to defend a setpoint, but as a
response to some prediction. The model attributes diseases such as essential
hypertension and type 2 diabetes to sustained neural signals that arise from
unsatisfactory social interactions. Consequently, the allostasis model would
redirect therapy away from manipulating low-level mechanisms and toward
improving higher levels to restore predictive fluctuation, which under this
model is the hallmark of health.

This essay comprises six main sections. The first provides a capsule his-
tory of the allostasis model, which by now extends back over 40 years. The
second section offers a brief critique of the homeostasis model, focusing on
blood pressure because of its broad medical significance. The third section
presents key principles of allostasis. Introduced are recent concepts of opti-
mal matching and adaptive regulation, which are then used to reconsider
problems of human physiology, such as blood pressure. The fourth section
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describes how allostasis depends on higher neural mechanisms, and the
fifth section suggests how these mechanisms interact with certain aspects
of modern social organization to generate some of the major modern dis-
eases. The last section treats the question of where to intervene.

ORIGINS OF ALLOSTASIS

For several decades, I combined research and teaching in neuroscience with
social activism. In the mid-1960s, canvassing door-to-door in the African
American ghettos such as Central and Hough of Cleveland Ohio, I no-
ticed that many people who answered my knock were partially paralyzed –
faces sagging on one side, walking with a limp and a crutch. The cause
was “stroke,” a rare affliction in my own community, and one that I never
encountered later when canvassing in white, upper-class Brookline, Mas-
sachusetts. What caused so many strokes, I wondered, and how might they
be connected to Cleveland’s racial segregation? Arriving around 1970 at
the University of Pennsylvania, I found that Joseph Eyer, another biologist-
activist, had assembled clear epidemiological evidence that stroke and heart
disease, and their precursor hypertension, all accompany various forms of
social disruption, including migration, industrialization, urbanization, seg-
regation, unemployment, and divorce (Eyer 1975, 1977; Eyer and Sterling,
1977).

While publishing the epidemiological data, we began to investigate
the possible biological mediators. The fury in Hough – which during the
summer of 1966 exploded in riots and occupation by National Guard
troops – would tend to activate Cannon’s well-known, “fight-or-flight” sys-
tem (sympathetic nerves and adrenal medulla) and Selye’s “stress” system
(hypothalamo-pituitary-adrenal cortex). But we were astonished by new
evidence from fluorescence microscopy that all blood vessels are richly in-
nervated by catecholamine nerve fibers and new evidence from electron
microscopy that most endocrine cells are also innervated. For example,
sympathetic nerves contact the kidney cells that secrete renin, and parasym-
pathetic nerves contact the pancreas cells that secrete insulin. Recent work
has shown that nerves even contact cells that form bone and scavenger cells
(macrophages) that serve inflammation and immune surveillance (Flier,
2000; Bernik et al., 2002; Blalock, 2002; Takeda et al., 2002; Tracy, 2002). This
suggested that the brain has close access to essentially every somatic cell.

Furthermore, John Mason measured multiple hormones in awake, be-
having monkeys and found concerted shifts that made functional sense.
A mild demand for focused attention raised hormones associated with
catabolism and suppressed those associated with anabolism (Mason, 1968,
1971, 1972). Furthermore, prolonging these demands caused sustained
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elevations of blood pressure (Harris et al., 1973). Mason concluded that the
broad metabolic patterns over short and long time scales, and under mild
as well as emergency conditions, are controlled by the brain. Subsequently,
myriad studies of neuroendocrine control have supported this conclusion
(Schulkin, 1999).

Back then, standard medicine attributed essential hypertension and
atherosclerosis to excessive consumption of salt and fat – as though what
people choose to eat were unrelated to their internal physiological and
mental states. So it was compelling to learn that the peripheral hormones
that raise blood pressure, such as angiotensin, aldosterone, and cortisol,
also modulate brain regions that stimulate hunger for sodium (reviewed
by Schulkin, 1999; Fluharty, 2002). Similarly, peripheral hormones that in-
crease catabolism, such as cortisol, also modulate brain regions that stimu-
late hunger for energy-rich substrates – fat and carbohydrates (reviewed by
Schulkin, 1999; Schwartz et al., 2000; Saper et al., 2002). Of course, such
findings would not have surprised Pavlov, who had demonstrated early on
the brain’s anticipatory control over many phases of digestion, nor Richter,
who had connected specific hungers to physiological regulation (Schulkin,
2003a, 2003b).

But to a social activist this seemed immensely relevant: if the brain regu-
lates both physiology and its supporting behavior, then treatments directed
only at the peripheral physiology would tend to be countered by the be-
havior. So, rather than clamp blood pressure at some “normal” value by
diuretics, vasodilators, and beta-adrenergic antagonists (the main antihy-
pertensive drugs of the 1970s and ’80s), wouldn’t it be better to reduce
social and psychological disruption? That is, wouldn’t it be better to ad-
dress the higher-level signals that stimulate both the physiology and the
behavior? We found a perfect example at the Philadelphia Child Guidance
Clinic.

Diabetic children who experience chronic bouts of ketoacidosis had
been widely treated with beta-adrenergic antagonists. This often proved in-
effective, and it was hypothesized that the metabolic disturbance is induced
by parental conflict expressed through the child (“who is right, Daddy or
Mommy?”). This was directly observed in “stress interviews.” The parents’
fatty acid levels would rise but soon return toward baseline, whereas the
child’s would remain elevated for hours (Fig. 1.2A). Clearly, potent psycho-
logical demands were driving multiple physiological mechanisms to over-
ride the beta-adrenergic mechanism. Salvador Minuchin, the clinic director,
described this as a poignant demonstration that “behavioral events among
family members can be measured in the bloodstream of other family mem-
bers” (Minuchin, 1974).
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Figure 1.2: Parental conflict modulates a child’s blood chemistry. A. While parents ex-
pressed conflict during an interview, free fatty acid levels rose in all family members. Ini-
tially the children, both diabetic, watched through a one-way mirror. At 10 o’clock, they
entered the room, whereupon each parent tried to enlist Dede to take his or her side,
while Violet remained aloof. Violet’s free fatty acid levels followed the parents’, but Dede’s
were greatly elevated. Reprinted from Minuchin, 1974. B. Child had been hospitalized ( )
for emergency treatment of ketoacidosis 23 times over 2 years, and beta-blocker treat-
ment of her “superlabile” diabetes was unsuccessful. Family therapy that encouraged the
parents to express their disagreements directly (rather than through the child) prevented
further relapse. Modified from Baker et al., 1974.

Such children stabilized easily in the hospital but, upon reentering the
family, soon relapsed. When the parents were helped to resolve their marital
conflicts directly, the children stabilized at home without the beta-blocker
(Fig. 1.2B; Baker et al., 1974). This example of successful intervention be-
tween people, rather than between nerve and liver, seemed of broad so-
ciomedical significance (Sterling and Eyer, 1981). Nevertheless, the idea on
which it rests, that the brain controls human physiology, remains largely
outside the realm of standard teaching in biology and medicine.

Later, while summarizing this material for another essay collection, it
hit us that when you name an idea, it has a better chance. So, we coined a
new word, “allostasis,” to emphasize two key points about regulation: pa-
rameters vary, and variation anticipates demand (Sterling and Eyer, 1988). The
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idea did spread to some degree, largely through the prolific writings of ex-
perts on stress and neuroendocrine regulation, such as McEwen, Schulkin,
Sapolsky, Koob, and their colleagues (Sapolsky, 1998; Koob and Le Moal,
2001; McEwen, 2002; Schulkin 2003a, 2003b). Yet even these proponents
of allostasis have been somewhat reluctant to abandon homeostasis as the
core theory of regulation and have tended to view allostasis as a modu-
lator of homeostatic mechanisms. Some simply equated it with “stress” or
“fight-flight” response and suggested that it is an anachronism. For example,
“Allostasis has evolved as the response for running away from a predator,
escaping acute danger, or fighting off a threat. . . . However, a defense sys-
tem that has its roots in an archaic fish can be absurd in a modern human”
(Elbert and Rochstroh, 2003). If this were allostasis, it would be entirely
justified to discount it as just a fancy word applied to an old idea (Dallman,
2003).

But the allostasis model has a more radical intent – to replace homeosta-
sis as the core model of physiological regulation. There are solid scientific
reasons: the allostasis model connects easily with modern concepts in sen-
sory physiology, neural computation, and optimal design. Also, this model
can begin to comprehend what homeostasis cannot: the main diseases of
modern society, such as hypertension, obesity-diabetes, and drug addiction.
There are also practical, socially relevant reasons: the allostasis model sug-
gests a different goal for therapeutics and thus a different direction for med-
ical education and treatment. Consequently, this essay begins by assuming
that the original conjecture is proved – that physiology is indeed sensitive
to social relations. The evidence for this is now vast and thoroughly sum-
marized by McEwen (2002), Sapolsky (1998), and Berkman and Kawachi,
(2000). Thus I first describe some difficulties with the homeostasis model
and then set out some core principles of the allostasis model that might
justify the fancy name.

PROBLEMS WITH HOMEOSTASIS AS THE PRIMARY MODEL

FOR REGULATION

Constancy Is Not a Fundamental Condition for Life
It seems past time to acknowledge that when Bernard declared constancy to
be the sole object of all vital mechanisms, he went too far. Most biologists
now agree that the true object of all the vital mechanisms is not “constancy”
but survival to reproduce. So what all the vital mechanisms actually serve
is reproductive success under natural selection. Moreover, there is nothing
magical about “constancy.” We now know that the conditions extend to
amazing extremes: thermophilic bacteria can thrive at 100◦C, and the limit
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for their successful culturing extends to 113◦C! (Hochachka and Somero,
2002). Cell temperatures in the desert can fluctuate by nearly 100◦C, and
even in complex metazoans the pH of blood and cytosol varies systemati-
cally with temperature (Hochachka and Somero, 2002).

Of course, some parameters are regulated quite closely. For example,
the mammalian brain tolerates only small fluctuations in oxygen, glucose,
temperature, and osmotic pressure. An acute insult that drives any one of
these parameters beyond its design limit can trigger cascades of positive
feedback that are quickly lethal. Such catastrophic departures from stabil-
ity certainly require emergency treatment directed at low-level processes
(Buchman, 2002). But the purpose of such tight regulation may not be to
defend “constancy” in the abstract. Rather, it may simply reflect specific de-
sign choices that optimize overall mammalian performance for successful
competition.

For example mammalian brain tissue, such as the intact retina or a slice
of cerebral cortex, functions for hours in a simple medium at room temper-
ature. A neuron’s sensitivity is lower than for the optimal 37◦C by twofold
for each 10 degrees (Dhingra et al., 2003), similar to the temperature sen-
sitivity of most biochemical reactions. So the mammalian brain’s normal
operating temperature apparently reflects an early design decision: to move
fast, we must think fast. This decision had myriad consequences; for exam-
ple, to move fast, we must also see fast. This requires the photoreceptors to
be small, which in turn sets the design of retinal circuits (Sterling, 2004).
In short, close regulation of human cerebral temperature does not exem-
plify the condition for preserving all life – it is just one condition set by a
particular design.

A Mean Value Need Not Imply a Setpoint but Rather the Most
Frequent Demand
It also seems past time to reevaluate the core hypothesis of the homeosta-
sis model: that the average level of each parameter represents a “setpoint”
that is “defended” against deviations (errors) by local feedback (Fig. 1.1).
This model captured much of the experimental truth in a simple “prepa-
ration” – such as an isolated organ or an animal whose brain has been
silenced by anesthesia or decerebration – which were the primary experi-
mental models for more than 100 years. But regulation under natural condi-
tions presents a response pattern that the homeostasis model cannot easily
explain.

Consider the record of arterial blood pressure measured continuously
over 24 hours in a normal adult (Fig. 1.3). Far from holding steady, pressure
fluctuates markedly around 110/70 mm Hg for 2 hours. Then in correlation
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Figure 1.3: Arterial pressure fluctuates to meet predicted demand. Pressure was plotted
in a normal adult at 5-minute intervals over 24 hours. Note that pressure spends about
equal time above and below the steady daytime level. This pattern suggests not defense of
a setpoint, but rather responsiveness to rising and falling demand. Upper trace, systolic;
lower trace, diastolic. Redrawn from Bevan et al., 1969.

with identified external stimuli and mental states, it varies more extremely.
As the subject dozes in lecture, pressure falls to 80/50. When he is jabbed
with a pin, pressure spikes to 150/70; then, having recognized the prank,
he again relaxes, and the pressure sinks to 80/50. During sexual intercourse,
pressure spikes to 170/90 and then falls profoundly during sleep to ∼70/40
with 1 hour as low as 55/30. In the morning, pressure steps up nearly to its
level during sex and remains high for hours.

This record contains no hint that blood pressure is defended at particular
setpoint. Quite the contrary, it fluctuates markedly and does so on multi-
ple time scales – minutes, seconds, and hours. There are elevations, both
brief and sustained, above the most frequent level. There are also similar
depressions below the most frequent level. If this level truly represented a
setpoint, we might expect it to fluctuate only mildly except when a particu-
larly arousing signal would drive it higher (fight or flight). But the pressure
spends about as much time far below the most frequent level as above it,
and this is not predicted by a model of setpoint + arousal-evoked eleva-
tion. If fluctuations were caused by poor control, for example, by excessive
or insufficient loop gain (Fig. 1.1), the deviations would show character-
istic temporal patterns, such as “ringing” or lag. But the varied temporal
patterns and their exquisite matching to particular behavioral and neural
states imply that fluctuations arise not from poor control but from precise
control.

Most parsimoniously, the record suggests that pressure is regulated to
match anticipated demand, rising to certain signals and falling to others.
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Figure 1.4: The brain sets blood pressure via multiple, mutually reinforcing mechanisms.
Negative feedback mechanisms are acutely overridden. When demand persists, all mech-
anisms are reset to operate at the new level. Most hormones illustrated here are also
sensed by the brain (dashed arrows) in specific regions that control behaviors support-
ing increased pressure. Thus, aldosterone and angiotensin II are sensed by brain regions
that enhance salt appetite and drive salt-seeking behavior. CRH = corticotrophic releasing
hormone; ACTH = corticotropin; ANP = atrionatiuretic peptide. Modified from Sterling
and Eyer, 1988.

This implies that the most frequent value, 110/70, occurs not because
pressure is clamped there, but because that value satisfies the most frequent
level of demand (see Fig. 1.5). Indeed, were pressure actually clamped at
an average value, it would match some specific need only by sheer acci-
dent. This is true for all states and all parameters: average values are useless.
The essential need is to occupy distinctly different states and to move flexi-
bly between them. But how could this occur, given local negative feedback
mechanisms that do tend to resist fluctuations?

Once the brain predicts the most likely demand for oxygen, it resets the
blood pressure to achieve the needed flow rate. Pressure here plays the same
role as in a shower: for a given resistance, set by the caliber of all the chan-
nels, pressure sets the flow. To adjust the pressure, the brain directly modu-
lates all three primary effectors: nerves signal the heart to pump faster, some
blood vessels to constrict and others to dilate, and kidneys to retain salt and
water. These direct neural messages are reinforced by additional signals act-
ing in parallel (Fig. 1.4). For example, the neural system that excites the
primary effectors also releases multiple hormones that send the same mes-
sage. Hormones signaling the opposite message are suppressed. This pat-
tern: multiple, mutually reinforcing signals acting on multiple, mutually
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reinforcing effectors, overrides the various feedbacks that oppose change.3

Recognizing such fluctuation, some authors have proposed the idea of shift-
ing setpoints, termed “rheostasis” (Mrosovsky, 1990). Shifting setpoints
might seem to describe certain cases, for example, sustained elevation of
body temperature in fever, but even here temperature is responding to spe-
cific signals that fluctuate adaptively.

The same is true for essentially all parameters: temperature, blood distri-
bution, hormone levels, and so on. All fluctuate with different amplitudes
and time constants, and these fluctuations all share a single goal. Yet the
goal is not constancy, but coordinated variation to optimize performance
at the least cost. This is the core idea of allostasis, the essential principles of
which are addressed next.

PRINCIPLES OF ALLOSTASIS (PREDICTIVE REGULATION)

This section discusses six interrelated principles that underlie allostasis:
(1) organisms are designed for efficiency, (2) efficiency requires reciprocal
trade-offs, (3) efficiency requires predicting what will be needed, (4) pre-
diction requires each sensor to adapt its sensitivity to the expected range
of input, (5) prediction requires each effector to adapt its output to the ex-
pected range of demand, and (6) predictive regulation depends on behavior
whose neural mechanisms also adapt.

Organisms Are Designed for Efficiency
Organisms must operate efficiently. Beyond escaping predators and resisting
parasites, they must compete effectively with conspecifics. If you encounter
a bear while hiking with a friend, you need not outrun the bear – just your
friend. So natural selection sculpts every physiological system to meet the
loads that it will most likely encounter in a particular niche plus a modest
safety factor for the unusual load. No system can be “overdesigned” because
robustness to very improbable loads will slow the organism and raise fuel
costs. Nor can a system be “underdesigned” because, if it fails catastrophi-
cally to a commonly encountered load, well, that’s it. In effect the organism

3 It is probably no accident that the error-correction model that Bernard adopted for physiology
mimicked the simple device that inaugurated the 19th century’s industrial technology (the
speed governor on Fulton’s steam engine). But machines have evolved, and the 21st century
automobile now preempts driver errors. The myriad sensors in a BMW (∼100) relay data to
a central mechanism (computer chip) that calculates the power and braking needed by each
wheel to optimize stability and skid resistance. Data from other sensors are centrally integrated
to control fuel, oxygen, and spark timing for each cylinder to optimize fuel consumption at
each power level. This resembles biology, where changing gait maximizes efficiency at different
speeds (Alexander, 1996; Weibel, 2000). In short, for a car with a “brain,” predictive regulation
produces better stability and greater efficiency.
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resembles an elevator cable, which must be just sufficiently robust to pre-
vent the cancellation of the manufacturer’s insurance (Diamond, 1993).

It follows that all internal systems should mutually match their capaci-
ties. Thus our intestinal absorptive capacity supplies sufficient fuel for our
most likely energy need – with modest excess to meet unusual demands
(Hammond and Diamond, 1997). Our lung and circulatory capacities sup-
ply sufficient oxygen to burn the available fuel; and our muscles contain
sufficient mitochondrial capacity to provide an adequate furnace (Weibel,
2000). Clearly it would be inefficient for an organ to provide more capacity
than could be used downstream, or for an organ downstream to provide
more capacity than can be supplied from upstream. This aspect of organ-
ismal design, where physiological capacities optimally match, is termed
“symmorphosis” (Taylor and Weibel, 1981). It holds for digestive, respira-
tory, and muscular systems, and also for neural systems (Diamond, 1993;
Weibel, 2000; Sterling, 2004).

Efficiency Requires Reciprocal Trade-Offs
Efficiency requires that resources be shared. Otherwise, each organ could
meet an unusual demand only by maintaining its own reserve capacity. To
support this extra capacity would require more fuel and more blood – and
thus more digestive capacity, a larger heart, and so on, thereby creating an
expensive infrastructure to be used only rarely. Consequently, organs can
trade resources – that is, make short-term loans. Regulation based on recip-
rocal sharing between organs is efficient, but for several reasons it requires
a centralized mechanism: (1) to continuously monitor all the organs, (2) to
compute and update the list of priorities, and (3) to enforce the priorities
by overriding all the local mechanisms (Fig. 1.4).4

For example, skeletal muscle at rest uses about 1.2 liters of blood per
minute (∼20% of resting cardiac output), but during peak effort it uses
about 22 L/min (∼90% of peak cardiac output), an 18-fold increase. Much
of the extra blood comes from increased cardiac output, but that is insuf-
ficient. And although tissues may store fuel, such as glycogen and fatty
acids, they cannot store much oxygen. Nor would it be useful to maintain
a large reservoir of deoxygenated blood because peak demand completely
occupies the pulmonary system’s capacity to reoxygenate. So a reservoir of
deoxygenated blood would require a reservoir of lung, heart, and so on.

4 Again, industrial analogies seem pertinent. Consider the efficiencies achieved by sharing elec-
tricity in a power grid and by rapidly redistributing inventory in a factory system. This type
of efficiency requires continual, rapid updating of information about current demand, plus
prior knowledge of how demand will probably change with factors such as temperature, time
of day, season, world market, and so on.
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In turn, these would require increased capacities for digestion, absorption,
excretion, and cooling. Consequently, for an unstorable resource, subject
to variable demand, it is most efficient to share. So, at peak demand about
10% of the total flow to muscle is borrowed (Weibel, 2000).

The loan cannot come from the brain, which requires a constant supply,
that, if interrupted for mere seconds, causes loss of consciousness. So muscle
borrows from the renal and splanchnic circulations, whose individual shares
of cardiac output drop from about 20% to 1%, and whose absolute supplies
fall by four- to fivefold (Weibel, 2000, figure 8.6). The skin circulation also
contributes. Kidney, gut, liver, and skin can generally afford to lend for the
short term – depending on circumstances. For example, skin can postpone
reoxygenation, but during exercise in a warm environment it requires more
blood for cooling. The gut can also postpone reoxygenation, but following a
meal it requires more blood to transport digests into the portal circulation.

Reciprocity Requires Central Control
The brain, although it represents 2% by weight in a 70-kilogram man, re-
quires 20% of the resting blood flow. This proportion is so great that when
a given brain region increases activity, the extra blood is requisitioned not
from somatic tissues, but from other brain regions (Lennie, 2003). Thus,
within the brain itself, resources are reciprocally shared.

Because the needs of muscle, gut, and skin can be irreconcilable, ap-
propriate trade-offs between them (and all the organs) must be calculated.
This requires a central mechanism, the brain, which must also enforce a
specific hierarchy of priorities and shift them as needs change. When mus-
cular effort is urgent, but you have just eaten and the environment is warm,
the brain triggers a vomiting reflex; when cooling is more urgent than ef-
fort, the brain may reduce the priority for an erect body posture and trigger
the vasovagal reflex (“fainting”): the heart slows, vessels dilate, blood pres-
sure falls, and muscle tone collapses. In short, the brain must decide the
conditions for each loan and set the schedule for repayment. Furthermore,
because such conflicts potentially threaten overall stability (survival), these
solutions are accompanied by unpleasant sensations, such as nausea and
dizziness, which the brain also provides. These sensations are vividly re-
membered to reduce the likelihood of repetition.

Efficiency Requires Predicting What Will Be Needed
We have already seen that blood pressure fluctuates to match the ever-
shifting prediction of what might be needed (Fig. 1.3). This is true for es-
sentially all physiological mechanisms. Consider an additional example,
control of blood glucose by insulin.
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This is usually presented as a core example of homeostasis: ingested
glucose raises the blood level, stimulating pancreatic beta cells to release
insulin, which stimulates muscle and fat cells to take up the glucose and
restore blood levels to the standard ∼90 mg/dL. Indeed a pancreas placed in
vitro and exposed to glucose will release insulin. But when an intact person
sits down to a meal, the sight, smell, and taste of food predict that blood
glucose will soon rise, and this triggers insulin release via neural mecha-
nisms well before freshly ingested glucose reaches the blood (Schwartz et al.,
2000). This anticipatory pulse of insulin signals muscle and fat cells to take
up glucose and signals the liver to cease releasing it. Thus this prediction
can prevent a large rise in blood glucose.

A different prediction can do the opposite, that is, it can elevate blood
glucose above the most frequent level. For example, Cannon reported that
members of the Harvard football team, anticipating a game, would elevate
their blood glucose to levels that spilled into the urine (Cannon, 1920). In
other words, predicting an intense need for metabolic energy can raise blood
glucose to diabetic levels. Insulin and the myriad other hormones that reg-
ulate the fuel supply are modulated rigorously from the brain, which bases
its predictions on a continuous data stream regarding metabolic state that
arrives via nerves from the liver and sensors in the cerebrovascular organs,
such as the area postrema and the hypothalamus (Friedman et al., 1998;
Saper et al., 2002). The importance and challenge of predictive regulation
is best appreciated by the type 1 diabetic who, to minimize surges of blood
glucose, injects insulin before a meal, and who, to allow his muscles to admit
glucose, injects insulin before exercise.

Sensors Must Match the Expected Range of Input
Sensors are designed to transduce a range of inputs into a range of outputs
(Fig. 1.5, upper panel). Typically the input-output curve is sigmoid and set
so that its midpoint corresponds to the statistically most probable input
(Fig. 1.5, lower panel). The curve’s steep, linear region brackets a range of
inputs that are somewhat likely, and its flatter regions correspond to inputs
(very weak or very strong) that are relatively unlikely (Laughlin, 1981). This
design has a clear advantage: the most likely events are treated with greatest
sensitivity and precision (Laughlin, 1981; Koshland et al., 1982). When
input events are small relative to noise, they may be amplified nonlinearly to
remove the noise by thresholding (Field and Rieke, 2002), but most sensors
amplify linearly as shown here (Rieke et al., 1999). Note that the design
of each sensor embodies “prior knowledge,” derived via natural selection,
regarding the range of the most likely inputs (Sterling, 2004).
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Figure 1.5: Regulatory mechanisms adapt to keep the input-output curves centered on
the most probable loads. Upper panel. Every system confronts some distribution of prob-
able loads (bold curve). As conditions shift, so does the distribution (dashed). Lower
panel. The input-output curve (bold) is typically sigmoid with its most sensitive region
(steep part) matched to the most probable loads. When the distribution of probable loads
shifts, the input-output curve shifts correspondingly (dashed). See Laughlin, 1981.

This simple design is effective when the statistical distribution of in-
puts is steady. But environmental signals fluctuate enormously; for exam-
ple, light intensity changes between day and night by 10-billion-fold. The
linear range of a visual sensor spans only 10-fold, so over the course of a
day, the sensor would frequently confront a range of inputs far too large or
too small for its response curve (Fig. 1.5, lower panel). For much stronger
inputs, the sensor would be too sensitive, and its output would saturate; for
much weaker inputs, it would be too insensitive and would miss them.

There is a remedy: sense the altered input statististics → calculate a new
probability distribution → shift the response curve to rematch its steep
region to the most likely loads (Fig. 1.5, lower panel). This strategy for
continually rematching outputs to expected inputs has been observed at
all levels of biological organization, from bacteria and somatic (nonneural)
cells to neurons (Sakmann and Creutzfeldt, 1969; Koshland, 1987). At lower
levels, the process has been termed “adaptation,” and recently “Bayesian”
has been added to emphasize Bayes’s insight that the best estimate of what
is happening in the world combines data from our sensors with our prior
knowledge about what is probably out there (Rieke et al., 1999). This prin-
ciple operates at many levels. Thus, we rely on a single experience of the
unpleasant sensations associated with regulatory conflict (dizziness, nau-
sea) to permanently enlarge our store of “prior knowledge.” And in the
perceptual realm, we identify an ambiguous object by sight or touch by
combining sensory inputs with our prior knowledge of what the context
suggests is most likely (Geisler and Diehl, 2002, 2003). In case of conflict


